# 9.3 **Experimental Probability**

# Essential Question What is meant by experimental probability?

### ACTIVITY: Throwing Sticks

Play with a partner. This game is based on an Apache game called "Throw Sticks."

- Take turns throwing three sticks into the center of the circle and moving around the circle according to the chart.
- If your opponent lands on or passes your playing piece, you must start over.
- The first player to pass his or her starting point wins.





#### ACTIVITY: Conducting an Experiment

2

3

Work with a partner. Throw the 3 sticks 32 times. Tally the results using the outcomes listed below. Organize the results in a bar graph. Use the bar graph to estimate the probability of each outcome. These are called experimental probabilities.



#### ACTIVITY: Analyzing the Possibilities



- **a.** Find the number of ways that each outcome can occur.
  - Three Ps
  - One D and two Ps
  - Two Ds and one P
  - Three Ds
- b. Find the theoretical probability of each outcome.
- c. Compare and contrast your experimental and theoretical probabilities.

## -What Is Your Answer?

- 4. IN YOUR OWN WORDS What is meant by experimental probability?
- 5. Give a real-life example of experimental probability.



Use what you learned about experimental probability to complete Exercises 3–6 on page 402.

D

DDD DDP

D

DPD

DPP

D

PDD

PDP

D

Ρ

D

PPD

P

PPP



$$P(\text{rain}) = \frac{\frac{2}{12}}{\frac{1}{6}} = \frac{1}{6}$$
There is a total of 12 days.

To make a prediction, multiply the probability of a rainy day by the number of days in April.

$$\frac{1}{6} \cdot 30 = 5$$

• You can predict that there will be 5 rainy days in April.

"April showers bring May

flowers." Old Proverb, 1557

29

30

Multi-Language Glossary at BigIdeasMath com.





- 1. In Example 1, what is the experimental probability that your next email is *not* junk?
- 2. At a clothing company, an inspector finds 5 defective pairs in a shipment of 200 jeans.
  - **a.** What is the experimental probability of a pair of jeans being defective?
  - **b.** About how many would you expect to be defective in a shipment of 5000 pairs of jeans?

#### EXAMPLE

3

### **Comparing Experimental and Theoretical Probabilities**



#### Experimental Probability

#### The bar graph shows the results of rolling a number cube 50 times. What is the experimental probability of rolling an odd number? How does this compare with the theoretical probability of rolling an odd number?

Find the experimental probability of rolling a 1, 3, or 5.

The bar graph shows 10 ones, 8 threes, and 8 fives. So, an odd number was rolled 10 + 8 + 8 = 26 times in a total of 50 rolls.

#### Theoretical Probability



probabilities are similar.

#### On Your Own



**3.** In Example 3, what is the experimental probability of rolling a number greater than 1? How does this compare with the theoretical probability of rolling a number greater than 1?

### 402 Chapter 9 Probability



## Vocabulary and Concept Check

- 1. VOCABULARY Describe how to find the experimental probability of an event.
- **2. REASONING** You flip a coin 10 times and find the experimental probability of flipping tails to be 0.7. Does this seem reasonable? Explain.

## Practice and Problem Solving

You have three sticks. Each stick has one red side and one blue side. You throw the sticks 10 times and record the results. Use the table to find the experimental probability of the event.

- **3.** Tossing 3 red **4.** Tossing 2 blue, 1 red
- 5. Tossing 2 red, 1 blue 6. Not tossing all red

# Use the bar graph to find the experimental probability of the event.

- **1 7.** Spinning a 6 **8.** Spinning an even number
  - **9.** *Not* spinning a 1 **10.** Spinning a number less than 3
  - **11.** Spinning a 1 or a 3 **12.** Spinning a 7
  - **13. ERROR ANALYSIS** Describe and correct the error in finding P(4) using the bar graph.



- **14. EGGS** You check 20 cartons of eggs. Three of the cartons have at least one cracked egg. What is the experimental probability that a carton of eggs has at least one cracked egg?
- 2 **15. BOARD GAME** There are 105 lettered tiles in a board game. You choose the tiles shown. How many of the 105 tiles would you expect to be vowels?





**16. CARDS** You have a package of 20 assorted thank-you cards. You pick the four cards shown. How many of the 20 cards would you expect to have flowers on them?

| Outcome       | Frequency |  |
|---------------|-----------|--|
| 3 red         | 4         |  |
| 3 blue        | 0         |  |
| 2 blue, 1 red | 2         |  |
| 2 red, 1 blue | 4         |  |





- **17. QUALITY CONTROL** An inspector estimates that  $\frac{1}{2}$ % of MP3 players are defective. In a shipment of 5000 MP3 players, predict the number that are defective.
- **18. MUSIC** During a 24-hour period, the ratio of pop songs played to rap songs played on a radio station is 60:75.
  - **a.** What is the experimental probability that the next song played is rap?
  - **b.** Out of the next 90 songs, how many would you expect to be pop?
- **19. FLIPPING A COIN** You flip a coin 20 times. You flip heads 12 times. Compare your experimental probability of flipping heads with the theoretical probability of flipping heads.

#### You roll a pair of number cubes 60 times. You record your results in the bar graph shown.



**20.** Use the bar graph to find the experimental probability of rolling each sum. Which sum is most likely?

|    | · | • | • | ::           | ::           |  |
|----|---|---|---|--------------|--------------|--|
| •  | ŀ |   |   |              |              |  |
| ٠. |   |   |   |              |              |  |
| ٠. |   |   |   |              |              |  |
| :: |   |   |   |              |              |  |
| :: |   |   |   | <b>::</b> :: | $\mathbf{X}$ |  |
| :: |   |   |   |              |              |  |

- **21.** Use the table to find the theoretical probability of rolling each sum. Which sum is most likely?
- **22.** Compare the probabilities you found in Exercises 20 and 21.
- **23.** You roll two number cubes. Describe and perform an experiment to find the probability that the product of the two numbers rolled is at least 12. How many times did you roll the number cubes?

| A |                                                                                  | Fair Game                                              | Review What                 | you learned in previous grade | es & lessons           |  |  |  |
|---|----------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------|-------------------------------|------------------------|--|--|--|
|   | Solv                                                                             | ve the equation.                                       | (Section 2.5)               |                               |                        |  |  |  |
|   | 24.                                                                              | 5x = 100                                               | <b>25.</b> 75 = 15 <i>x</i> | <b>26.</b> $2x = -26$         | <b>27.</b> $-4x = -96$ |  |  |  |
|   | <b>28. MULTIPLE CHOICE</b> What is the least common denominator of the fractions |                                                        |                             |                               |                        |  |  |  |
|   |                                                                                  | $\frac{1}{16}$ , $\frac{2}{19}$ , and $\frac{3}{76}$ ? | (Skills Review Har          | udbook)                       |                        |  |  |  |
|   |                                                                                  | <b>A</b> 16                                            | <b>B</b> 76                 | <b>(C)</b> 304                | <b>D</b> 1216          |  |  |  |